借阅:7 收藏:0

英文版 Real analysis,fourth edition /(美)罗伊登著

ISBN/ISSN:978-7-111-31305-2

价格:CNY49.00

出版:北京 机械工业出版社 ,2010.07

载体形态:505页 ;21cm

丛编:经典原版文库

并列题名:Real analysis,fourth edition

其他题名:英文版

中图分类号:O174.1

责任者:罗伊登 著

    • 评分:
    • 加入暂存架

    豆瓣内容简介:

    《实分析(英文版·第4版)》是实分析课程的优秀教材,被国外众多著名大学(如斯坦福大学、哈佛大学等)采用。全书分为三部分:第一部分为实变函数论.介绍一元实变函数的勒贝格测度和勒贝格积分:第二部分为抽象空间。介绍拓扑空间、度量空间、巴拿赫空间和希尔伯特空间;第三部分为一般测度与积分理论。介绍一般度量空间上的积分.以及拓扑、代数和动态结构的一般理论。书中不仅包含数学定理和定义,而且还提出了富有启发性的问题,以便读者更深入地理解书中内容。

    豆瓣作者简介:

    目录:

    Contents
    Preface iii
    Lebesgue Integration for Functions of Single Real Variable
    Preliminaries on Sets, Mappings, and Relations
    UnionsandIntersectionsofSets
    Equivalence Relations, the Axiom of Choice, and Zorn’s Lemma .
    The Real Numbers: Sets, Sequences, and Functions
    1.1 The Field, Positivity, and Completeness Axioms 7
    1.2 TheNaturalandRationalNumbers 11
    1.3 CountableandUncountableSets . 13
    1.4 Open Sets, Closed Sets, and Borel Sets of Real Numbers 16
    1.5 SequencesofRealNumbers . 20
    1.6 Continuous Real-Valued Functions of a Real Variable . 25
    Lebesgue Measure 29
    2.1 Introduction . 29
    2.2 LebesgueOuterMeasure 31
    2.3 The σ-AlgebraofLebesgueMeasurableSets . 34
    2.4 Outer and Inner Approximation of Lebesgue Measurable Sets 40
    2.5 Countable Additivity, Continuity, and the Borel-Cantelli Lemma . 43
    2.6 NonmeasurableSets 47
    .2.7 The Cantor Set and the Cantor-Lebesgue Function 49
    Lebesgue Measurable Functions 54
    3.1 Sums,Products,andCompositions 54
    3.2 Sequential Pointwise Limits and Simple Approximation 60
    3.3 Littlewood’s Three Principles, Egoroff’s Theorem, and Lusin’s Theorem 64
    Lebesgue Integration 68
    4.1 TheRiemannIntegral 68
    4.2 The Lebesgue Integral of a Bounded Measurable Function over a Set of
    FiniteMeasure 71
    4.3 The Lebesgue Integral of a Measurable Nonnegative Function 79
    4.4 TheGeneralLebesgueIntegral 85
    4.5 Countable Additivity and Continuity of Integration 90
    4.6 Uniform Integrability: The Vitali Convergence Theorem 92
    Lebesgue Integration: Further Topics 97
    5.1 Uniform Integrability and Tightness: A General Vitali Convergence Theorem 97
    5.2 ConvergenceinMeasure 99
    5.3 Characterizations of Riemann and Lebesgue Integrability 102
    Differentiation and Integration 107
    6.1 ContinuityofMonotoneFunctions 108
    6.2 Differentiability of Monotone Functions: Lebesgue’s Theorem 109
    6.3 Functions of Bounded Variation: Jordan’s Theorem 116
    6.4 AbsolutelyContinuousFunctions . 119
    6.5 Integrating Derivatives: Differentiating Indefinite Integrals . 124
    6.6 ConvexFunctions . 130
    7The Lp Spaces: Completeness and Approximation 135
    7.1 NormedLinearSpaces . 135
    7.2 The Inequalities of Young, H older, and Minkowski 139¨
    7.3 Lp IsComplete:TheRiesz-FischerTheorem 144
    7.4 ApproximationandSeparability 150
    8The Lp Spaces: Duality and Weak Convergence 155
    8.1 The Riesz Representation for the Dual of Lp, 1 155
    8.2 Weak Sequential Convergence in Lp 162
    8.3 WeakSequentialCompactness 171
    8.4 TheMinimizationofConvexFunctionals174
    II Abstract Spaces: Metric, Topological, Banach, and Hilbert Spaces 181
    Metric Spaces: General Properties 183
    9.1 ExamplesofMetricSpaces 183
    9.2 Open Sets, Closed Sets, and Convergent Sequences 187
    9.3 ContinuousMappingsBetweenMetricSpaces 190
    9.4 CompleteMetricSpaces 193
    9.5 CompactMetricSpaces . 197
    9.6 SeparableMetricSpaces 204
    10 Metric Spaces: Three Fundamental Theorems 206
    10.1TheArzela-AscoliTheorem `. 206
    10.2TheBaireCategoryTheorem 211
    10.3TheBanachContractionPrinciple. 215
    11 Topological Spaces: General Properties 222
    11.1 OpenSets,ClosedSets,Bases,andSubbases. 222
    11.2TheSeparationProperties 227
    11.3CountabilityandSeparability 228
    11.4 Continuous Mappings Between Topological Spaces 230
    11.5CompactTopologicalSpaces. 233
    11.6ConnectedTopologicalSpaces 237
    12 Topological Spaces: Three Fundamental Theorems 239
    12.1 Urysohn’s Lemma and the Tietze Extension Theorem . 239
    12.2TheTychonoffProductTheorem . 244
    12.3TheStone-WeierstrassTheorem 247
    13 Continuous Linear Operators Between Banach Spaces 253
    13.1NormedLinearSpaces . 253
    13.2LinearOperators . 256
    13.3 Compactness Lost: Infinite Dimensional Normed Linear Spaces 259
    13.4 TheOpenMappingandClosedGraphTheorems . 263
    13.5TheUniformBoundednessPrinciple 268
    14 Duality for Normed Linear Spaces 271
    14.1 Linear Functionals, Bounded Linear Functionals, and Weak Topologies 271
    14.2TheHahn-BanachTheorem . 277
    14.3 Reflexive Banach Spaces and Weak Sequential Convergence 282
    14.4 LocallyConvexTopologicalVectorSpaces 286
    14.5 The Separation of Convex Sets and Mazur’s Theorem . 290
    14.6TheKrein-MilmanTheorem. 295
    15 Compactness Regained: The Weak Topology 298
    15.1 Alaoglu’sExtensionofHelley’sTheorem . 298
    15.2 Reflexivity and Weak Compactness: Kakutani’s Theorem 300
    15.3 Compactness and Weak Sequential Compactness: The Eberlein-ˇ
    Smulian Theorem 302
    15.4MetrizabilityofWeakTopologies . 305
    16 Continuous Linear Operators on Hilbert Spaces 308
    16.1TheInnerProductandOrthogonality 309
    16.2 The Dual Space and Weak Sequential Convergence 313
    16.3 Bessel’sInequalityandOrthonormalBases . 316
    16.4 AdjointsandSymmetryforLinearOperators 319
    16.5CompactOperators 324
    16.6TheHilbert-SchmidtTheorem 326
    16.7 The Riesz-Schauder Theorem: Characterization of Fredholm Operators 329
    III Measure and Integration: General Theory 335
    17 General Measure Spaces: Their Properties and Construction 337
    17.1MeasuresandMeasurableSets 337
    17.2 Signed Measures: The Hahn and Jordan Decompositions 342
    17.3 The Carath′346
    eodory Measure Induced by an Outer Measure
    17.4TheConstructionofOuterMeasures 349
    17.5 The Carath′eodory-Hahn Theorem: The Extension of a Premeasure to a
    Measure 352
    18 Integration Over General Measure Spaces 359
    18.1MeasurableFunctions 359
    18.2 Integration of Nonnegative Measurable Functions 365
    18.3 Integration of General Measurable Functions 372
    18.4TheRadon-NikodymTheorem 381
    18.5 The Nikodym Metric Space: The Vitali–Hahn–Saks Theorem 388
    19 General Lp Spaces: Completeness, Duality, and Weak Convergence 394
    19.1 The Completeness of LpX,μ1 ≤≤. 394
    19.2 The Riesz Representation Theorem for the Dual of LpX,μ1 ≤≤ 399
    19.3 The Kantorovitch Representation Theorem for the Dual of L∞X,μ. 404
    19.4 Weak Sequential Compactness in LpX,μ1 [p[ 1. 407
    19.5 Weak Sequential Compactness in L1X,μ: The Dunford-Pettis Theorem 409
    20 The Construction of Particular Measures 414
    20.1 Product Measures: The Theorems of Fubini and Tonelli 414
    20.2 Lebesgue Measure on Euclidean Space Rn 424
    20.3 Cumulative Distribution Functions and Borel Measures on 437
    20.4 Caratheodory Outer Measures and Hausdorff Measures on a Metric Space ′. 441
    21 Measure and Topology 446
    21.1LocallyCompactTopologicalSpaces 447
    21.2 SeparatingSetsandExtendingFunctions452
    21.3TheConstructionofRadonMeasures 454
    21.4 The Representation of Positive Linear Functionals on CcX:The Riesz-
    MarkovTheorem . 457
    21.5 The Riesz Representation Theorem for the Dual of CX 462
    21.6 RegularityPropertiesofBaireMeasures 470
    22 Invariant Measures 477
    22.1 Topological Groups: The General Linear Group . 477
    22.2Kakutani’sFixedPointTheorem . 480
    22.3 Invariant Borel Measures on Compact Groups: von Neumann’s Theorem 485
    22.4 Measure Preserving Transformations and Ergodicity: The Bogoliubov-Krilov
    Theorem 488
    Bibliography 495
    Index 497

    分馆名 馆藏部门 图书条码 索书号 登录号 状态
    A 中厅自科借阅区(三层半至四层) 833686 O174.1/2 833686 在架可借
    A 中厅自科借阅区(三层半至四层) 809991 O174.1/2 809991 在架可借
    A 中厅自科借阅区(三层半至四层) 809992 O174.1/2 809992 在架可借
    A 中厅自科借阅区(三层半至四层) 833687 O174.1/2 833687 在架可借
    序号 图书条码 索书号 登录号 藏书部门 流通状态 年卷期 装订册 装订方式 装订颜色
      类型 说明 URL
      评 论
      评分:
      发表

      北京创讯未来软件技术有限公司 版权所有 ALL RIGHTS RESERVED 京ICP备 09032139

      欢迎第5167190位用户访问本系统